Code No.: 14516 N/O

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Mech. Engg. : CBCS) IV-Semester Main & Backlog Examinations, May-2019

Design of Machine Elements

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q.No.	Stem of the question	M	L	СО	PC
	$Part-A (10 \times 2 = 20 Marks)$			1	
1.	Compare strength and stiffness using a stress strain curve for ductile materials?	2	2	1	1
2.	what are the advantages of preferred numbers used in design?	2	1	1	1
3.	Why stress concentration is not that much important for ductile materials subjected to static loading when compared to dynamic loading?	2	2	2	1
4.	What are the various methods to reduce stress concentration in bolts?	2	2	2	
5.	What are the differences between saddle keys and sunk keys?	2 2	2	2 3	1
6.	Highlight advantages of flexible coupling.	2	2	3	1
7.	Though cotter joints and couplings are used to connect members, Under what loading conditions each of them is used?	2	2 2	4	1
8.	What are the possible failures of cotter if it is perfectly tightened?	2	1	4	,
9.	Why metric V threads are generally not used in power transmission?	2	1	4	1
10.	Define parallel fillet and transverse fillet weld	2 2	2	5 5	1
	Part-B (5 \times 8 = 40 Marks)	2	1	5	1
11. a)	How are plain carbon steels designated according to BIS?	_			
b)	The stress induced at a critical point in a machine component having yield strength	2	1	1	1
12.	Maximum shear stress theory ii) Maximum principal stress theory. iii) Distortion energy theory.	6	3	1	2
	A steel cantilever is 200 mm long shown in figure. It is subjected to an axial load which varies from 150 N (compression) to 450 N (tension). The cantilever is of circular cross-section. It is of diameter 2d for the first 50 mm and of diameter d for the remaining length. Determine its diameter taking a factor of safety of 2. Assume the following values: Yield stress = 330 Mpa, Endurance limit in reversed loading = 300 Mpa, Correction factors = 0.7 in reversed axial loading.	8	4	2	2
	200 mm 150 mm 150 N 450 N				
(3. a)	Explain the effect of keyway on the strength of a shaft.	2	2	3	1
b)	Design and sketch a cast iron protective type flange coupling to transmit 15kW at 900 rpm from an electric motor to a compressor. The service factor may be assumed as 1.35. The following permissible stresses may be assumed: Shear stress for shaft, key and bolt material = 40MPa, Crushing stress for bolt and key = 80MPa, Shear stress for cast iron material = 8MPa.	6	4	3	3
					,
4. a)	Explain bolt of uniform strength with the help of sketches.	2	2	- 1	

15.	A rectangular steel plate is welded as a cantilever to a vertical column and supports a single concentrated load P, as shown in Fig. Calculate the weld size if shear stress in the same is not to exceed 140MPa.	8	3	5	2
	Weld IP = 60kN				
	1				
	100				
	50 150				
16. a)		4	3	1	2
	of a vertical bar 3.2 m long and 6 cm ² in section. if the maximum instantaneous extension is known to be 2.1 mm. what is the corresponding stress and the value of unknown weight? Given E=200 GPa.		,	•	-
b)	The work cycle of a mechanical component (50C4) subjected to completely reversed bending stresses consists of the following 3 elements.	4	2	2	2
	 a. ±550MPa for 87% of time b. ±400MPa for 10% of time 				
	c. ±500MPa for 3% of time				
	Ultimate strength of the material is 660MPa, Corrected endurance strength is 280				
17.	Mpa. Determine the life of the component. Answer any <i>two</i> of the following:				
a)	The standard cross section for a flat key, which is fitted on a 50 mm diameter shaft, is	4	2	2	•
,	16 X10mm. The key is transmitting 475 N-m torque from the shaft to the hub. The	4	2	3	2
	key is made of commercial steel (yield strength in tension = yield strength in				
	compression = 230 N/mm ²). Determine the length of the key, if the factor of safety is 3.				
b)	A steel plate subjected to a force of 5 kN and fixed to a channel by means of 3	4	3	4	3
	identical bolts is shown in fig. below. The bolts are made from plain carbon steel				
	45C8 ($\sigma_{yt} = 380 \text{ N/mm}^2$) and the factor of safety is 3. Specify the size of bolts.				
	5 kN				
	1 2 3				
	 				
	30 75 75 30 200				
c)	Deduce an expression for the efficiency of square threaded screw?	4	3	5	2
	an lpha				
	$\eta = \frac{1}{\tan(\emptyset + \alpha)}$				

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
11	Fundamental knowledge (Level-1 & 2)	42.5%
2	Knowledge on application and analysis (Level-3 & 4)	57.5%
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable, subject to a maximum of 10%)	NIL
